CTU Open 2022

Presentation of solutions

November 5, 2022

Journals

Journals

v

Rewrite as sequence of journal types (up or down).
UuuuDDDDUUUDDDDUUUUDDDDUU

In one operation:

» Reverse a substring
» Swap types of journals

UuuuDDDDUUUDDDDUUUUDDDDUU

v

v

v

Journals

v

Rewrite as sequence of journal types (up or down).
UuuuDDDDUUUDDDDUUUUDDDDUU
In one operation:

v

v

» Reverse a substring
» Swap types of journals

UuuuDDDDUUUDDDDUUUUDDDDUU
UUU | UDDDDUUU | DDDDUUUUDDDDUU

v

v

Journals

v

Rewrite as sequence of journal types (up or down).
UuuuDDDDUUUDDDDUUUUDDDDUU

In one operation:

» Reverse a substring
» Swap types of journals

UuuuDDDDUUUDDDDUUUUDDDDUU
UUU | UDDDDUUU | DDDDUUUUDDDDUU
UUU | UUUDDDDU | DDDDUUUUDDDDUU

v

v

v

v

v

Journals

v

Rewrite as sequence of journal types (up or down).
UuuuDDDDUUUDDDDUUUUDDDDUU

In one operation:

» Reverse a substring
» Swap types of journals

UuuuDDDDUUUDDDDUUUUDDDDUU

UUU | UDDDDUUU | DDDDUUUUDDDDUU
UUU | UUUDDDDU | DDDDUUUUDDDDUU
UUU | DDDUUUUD | DDDDUUUUDDDDUU

v

v

v

v

v

v

Journals

v

Rewrite as sequence of journal types (up or down).
UuuuDDDDUUUDDDDUUUUDDDDUU

In one operation:

» Reverse a substring
» Swap types of journals

UuuuDDDDUUUDDDDUUUUDDDDUU
UUU | UDDDDUUU | DDDDUUUUDDDDUU
UUU | UUUDDDDU | DDDDUUUUDDDDUU
UUU | DDDUUUUD | DDDDUUUUDDDDUU
UuuDDDUUUUDDDDDUUUUDDDDUU

v

v

v

v

v

v

v

Journals

> Note the splits between blocks of same types. Need to remove
all of them.

» UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU

Journals

> Note the splits between blocks of same types. Need to remove
all of them.
» UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU

» Can not remove more than two splits
» Any split with its both elements outside the operation or inside

the operation remains a split

Journals

> Note the splits between blocks of same types. Need to remove
all of them.
» UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU
» Can not remove more than two splits
» Any split with its both elements outside the operation or inside
the operation remains a split
» We can remove the optimal number of splits with each
operation.
» Use the operation on the second block.

> If only two blocks remain, than it's final move.
» Otherwise we remove two splits.

» Answer is half the number of splits rounded up.

Patio

Patio

The pavement must use k2 tiles for some integer k > 3.
k2 <n

k < +/n, thus need to try only y/n different sizes.

In total, only n-+/n candidates for the nice pavement.

Solution in time O(n - y/n) will pass easily.

Let r be the number of red tiles in the block, b be the number
of blue ones.

The block is valid if r = (k —2)? and b = 4k — 4 (or with r
and b swapped).
Try all values 3 < k < +/n and all starting positions.

Quickly maintain the values of r and b.

Volcanoes

Volcanoes

» If there won't be any any point with common x coordinate,
we would only sort the points and go from left to right.

Volcanoes

» If there won't be any any point with common x coordinate,
we would only sort the points and go from left to right.

» Observation: The only interesting points with similar x
coordinates are the lowest and highest.

[.

Volcanoes

» If there won't be any any point with common x coordinate,
we would only sort the points and go from left to right.

» Observation: The only interesting points with similar x
coordinates are the lowest and highest.

[.

» We can build DAG from each of the bottommost/topmost
node of each x coordinate to the bottommost/topmost node
of the following x coordinate.

» Use dynamic programming: O(N)

» Alternatively use Dijkstra: O(N log,(N))

Wagon

Wagon

» Naive solution:

» If you don't have any item try to buy any of the items (and
carry it futher) or none.
> If you have an item try to either sell it or carry it futher.

» Complexity: O(MN)

Wagon

» Naive solution:
» If you don't have any item try to buy any of the items (and
carry it futher) or none.
> If you have an item try to either sell it or carry it futher.
» Complexity: O(MN)
» Optimization - use dynamic programming. If you remember
which item you bought the complexity would be O(MN?)

Wagon

Naive solution:

» If you don't have any item try to buy any of the items (and
carry it futher) or none.
> If you have an item try to either sell it or carry it futher.

Complexity: O(MN)
Optimization - use dynamic programming. If you remember
which item you bought the complexity would be O(MN?)

This can be futher optimized if you jump through bought
items only if you build one.

To do this you can build some kind of "next" array.
Complexity: O(MN + N log,(N))

Mower

Mower

> 2-player snake-like game

> decide whether the first player wins

Mower

> 2-player snake-like game

> decide whether the first player wins

ot—

Mower

> 2-player snake-like game
> decide whether the first player wins

->@

T<—— »

Mower

> 2-player snake-like game
> decide whether the first player wins

|
Y
*—>0

Mower

> 2-player snake-like game
> decide whether the first player wins

o—>0—>0

| D
.

Mower

> 2-player snake-like game

> decide whether the first player wins

*—>0—>0—>0

| D
.

Mower

» 2-player snake-like game

» decide whether the first player wins

o—-»o—-»o—-»T

| D
.

Mower

» 2-player snake-like game

» decide whether the first player wins

Y
o<+—0

o—-»o—-»o—-»T

| D
.

Mower

» 2-player snake-like game

» decide whether the first player wins

=

!
1

->@

T<—— »

o—-»o—-»o—-»T

Mower

» 2-player snake-like game

» decide whether the first player wins

=

!
1

Y
o<+—0

o—-»o—-»o—-»T

| D
.

Mower

» 2-player snake-like game

» decide whether the first player wins

| D
.

i
|
|
1
:

Mower

» 2-player snake-like game

» decide whether the first player wins

i

I .—-VI
R S R
AN

Mower

» 2-player snake-like game

» decide whether the first player wins

@—p
T]
: L’T
4
s & ee—v
| 4 T
Y l Y
*o—> —>0

Mower

Mower

>0

Mower

- —

Mower

- —

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Mower

Solution:

11 W, H, X, Y; cin >> W >> H >> X >> V;
cout << ((Wh2==0) | | (H%2==0) | | ((X+Y)%2!=0)?"Win":"Lose");

Earthquake

Earthquake

» Checking all numbers from the old list for each number from
the stained list is slow

Earthquake

» Checking all numbers from the old list for each number from
the stained list is slow

» Instead, we build a reverse index

Earthquake

» Checking all numbers from the old list for each number from
the stained list is slow
> Instead, we build a reverse index

> For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

Earthquake

» Checking all numbers from the old list for each number from
the stained list is slow

» Instead, we build a reverse index

> For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

» Upon inspection of a stained number, just return the value in
its counter

Earthquake

» How many possible stained numbers for a particular number
from the old list are there?

Earthquake

» How many possible stained numbers for a particular number
from the old list are there?

» Not stained — 1 728147956

Earthquake

» How many possible stained numbers for a particular number

from the old list are there?
> Not stained — 1 728147956
» Coffee stained

Once: (?) =9

728147956

778147956
727147956

Twice: (g) =36

778147956
727147956
728747956

Earthquake

» How many possible stained numbers for a particular number
from the old list are there?

» Not stained — 1 728147956

» Coffee stained

Once: (?) =9 Twice: (g) =36
728147956 778147956
778147956 727147956
727147956 728747956

> Juice stained — number of continuous subsequences, that are
omitted: 948+ ...+1=145
7 28147956 72 8147956 728 147956
~— —~— ~~

* * *

Earthquake

> In total, this is at most 91 possible stained numbers per
a number in the old list = 91 - 10* = at most ~ 10° possible
stained numbers to be preprocessed

Robots

Robots

» Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

Robots

» Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

» For every node we want to know the first time tiger can get
there in "odd” time and in "even” time.

Robots

» Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

» For every node we want to know the first time tiger can get
there in "odd” time and in "even” time.

» Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

Robots

>

Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

For every node we want to know the first time tiger can get
there in "odd” time and in "even” time.

Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.
Try to get (by BFS) from start to end.

» If you step on node earlier then AtlasTiger - you can enter.

» If you step on node after the first odd occurence of tiger but
before first even occurence of tiger, you can enter if and only if
the time is even.

> If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

» If you step on node after first occurence of tiger in both, odd
and even times, you can't step on the node.

Robots

» Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

» For every node we want to know the first time tiger can get
there in "odd” time and in "even” time.

» Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.
» Try to get (by BFS) from start to end.

» If you step on node earlier then AtlasTiger - you can enter.

» If you step on node after the first odd occurence of tiger but
before first even occurence of tiger, you can enter if and only if
the time is even.

> If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

» If you step on node after first occurence of tiger in both, odd
and even times, you can't step on the node.

» Complexity O(N)

Array

Array

> Pascal triangle, i-th entry on n-th row is (7_}).

row 1: 1
row 2: 1 1
3 1 \2 - 1
row 3:
row 4: 1 3 3 1
row n: 1 n—1 Omn?) - O(n? n—1 1

» Task: Find topmost occurrence of a number < 10°.
» Observation: There is relatively small number of small Pascal
numbers (with exception of the obvious ones - on borders).
» On row n > 44723, only one new value not greater than 10°%:
n—1.
» On row n > 1820, only two: n— 1 and (";1).

Array

» Pascal triangle, i-th entry on n-th row is (n—1).

i—1
row 1: 1
row 2: 1 1
3 1 \2/ 1
row 3:
row 4: 1 3 3 1
row n: 1 n—1 Omn?) - O(n? n—1 1

» Task: Find topmost occurrence of a number < 10°.
» Observation: There is relatively small number of small Pascal
numbers (with exception of the obvious ones - on borders).
» On row n > 44723, only one new value not greater than 10°%:
n—1.
» On row n > 1820, only two: n— 1 and (";1).
» Generate all numbers, store them in map/dictionary and then
swiftly answer for each query. If number n is not in map, reply
row n+ 1.

Canoes

Canoes

» First we make observations about glaringly impossible cases

Canoes
» First we make observations about glaringly impossible cases
» Intersections at the ends of docks are OK v

1 2 3 2! 1 2

777777

f

777777
250507
750077
250507 1
750077
750507

17777

Canoes

> Intersections of the middle of a dock with an end of a dock

are OK /
1 2 3 _ 1 2 3 _
il N 1
2 2
s -
3 0770000770007 3

22704777777

Canoes

» Intersections of the middle of a dock with the middle of a
dock are not OK X

Canoes

» Intersections of the middle of a dock with the middle of a
dock are not OK X

» Also not when two docks coincide

777777 > prrrr

N
N
N
N
N
N
SSSSSYSSSSS

Canoes

» Intersections of the middle of a dock with the middle of a
dock are not OK X

» Also not when two docks coincide

» With the exception of square boats v/

-
NN
SANEY
NN
SANNY
NN
SANNY

-
N
N
N
N N
N

SSSSSAKSSSSS

Canoes

» We model the configuration as implications with the use of
the following key: 1T X, | =X, «+ X, = =X

1 2, 3 _LB 1 2
~ 7] 4

1 1|
q

f 4
2 21
3 3
4 4 1N
Ay —-Avy

> Yields (A= —-B) & (B= -A) < (-AV —B)

Canoes

> Yields (=B) < (=B V —B) < (B = —B)

Canoes

» For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(AV-B)A(CVC)AN(CV-D)A...

Canoes

» For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(AV-B)A(CVC)AN(CV-D)A...

» We employ a SCC-based 2-SAT algorithm, which provides
solution in O(N + M) for N variables and M clauses

Canoes

» For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(AV-B)A(CVC)AN(CV-D)A...

» We employ a SCC-based 2-SAT algorithm, which provides
solution in O(N + M) for N variables and M clauses

» Complexity: O(N)

Transmitters

Transmitters

» Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings

» aaabc
» abbc

» aaabx

Transmitters

» Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

» aaabc
» abbc

» aaabx

Transmitters

» Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

» aaabc
» abbc

» aaabx

Transmitters

» Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

» aaabc
» abbc

» aaabx

Transmitters

» For every i, find the minimum index j such that block [, j]
has cost at least K.

> Use sliding window: Note that as i increases, j can not
decrease.

Transmitters

» For every i, find the minimum index j such that block [, j]
has cost at least K.
> Use sliding window: Note that as i increases, j can not
decrease.
» Use trie to keep track of cost:
» Contains all the strings in block [/, j].
» Count how many times each prefix appears.
» Make sure to update count when adding/removing strings.
» Linear complexity.

Transmitters

— aaabc
abbc
aaabx
Cost: 0

Transmitters

— aaabc
abbc
aaabx
Cost: 0

Transmitters

— aaabc
abbc
aaabx
Cost: 0

Transmitters

— aaabc
abbc
aaabx
Cost: 0

S B P

Transmitters

— aaabc
abbc
aaabx
Cost: 0

—%1}—%1}—%1%1

Transmitters

— aaabc
— abbc
aaabx
Cost: 1

Transmitters

— aaabc
— abbc
aaabx
Cost: 1

Transmitters

— aaabc
— abbc
aaabx
Cost: 1

Transmitters

— aaabc
— abbc
aaabx
Cost: 1

RN
#1@%101

Transmitters

— aaabc
— abbc
— aaabx
Cost: 3

Transmitters

— aaabc
— abbc
— aaabx
Cost: 4

Transmitters

— aaabc
— abbc
— aaabx
Cost: 5

Transmitters

— aaabc
— abbc
— aaabx

Cost: 6

Transmitters

— aaabc
— abbc
— aaabx

Cost: 6

Transmitters

— aaabc
— abbc
— aaabx
Cost: 4

Transmitters

— aaabc
— abbc
— aaabx
Cost: 3

Transmitters

— aaabc
— abbc
— aaabx
Cost: 2

fﬂQ}—&Hlaleﬁﬂl\
b,

Transmitters

— aaabc
— abbc
— aaabx
Cost: 1

Transmitters

— aaabc
— abbc
— aaabx
Cost: 1

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

o

S
b,

0

Transmitters

— aaabc
— abbc
— aaabx
Cost: 0

0

o

S0 10)
L

0 0

X
1

0

Transmitters

v

Alternatively use hashing!

v

For each prefix, keep track of how many times it is in the
sliding window.

v

Use rolling hash to quickly compute the next hash.

v

Linear solution.

v

Watch out for collisions!

Shamans

Shamans

» Construct a graph: each tile is a vertex, connect by edges tiles
sharing an edge.

» We can cut two tiles if their edge is a bridge (its removal
makes the graph disconnected).

» We can identify bridges in O(n + m).

Shamans

>

Try all possible sizes of the cut parchments.

» Must be a divisor of n, thus only at most 2 - \/n possibilities.
First pick the size of the cut parchments. Then check if it's
valid.

11

)]
i
=

1 6

» 21 blocks in total. Try sizes 1, 3, 7, 21.

Go bottom up: merge biconnected components until they
reach the correct size.

Then check its shape and remove the component.

Shamans

» Try all possible sizes of the cut parchments.
» Must be a divisor of n, thus only at most 2 - \/n possibilities.
» First pick the size of the cut parchments. Then check if it's
valid.

11

)]
i
=

S
1]
» 21 blocks in total. Try sizes 1, 3, 7, 21.

» Go bottom up: merge biconnected components until they
reach the correct size.

» Then check its shape and remove the component.
» O(n) for one size of the cut parchments, total running time

O(ny/n).

Needle

Needle

se

ot

Needle

se

ot

Needle

Needle

Needle

ot

N e o
2\0
— @
— & N®

oe

se

Needle

Needle

Needle

» given point clouds find shortest path from s to t

Needle

» given point clouds find shortest path from s to t

» point clouds constitute convex non-touching shapes

Needle

» given point clouds find shortest path from s to t
» point clouds constitute convex non-touching shapes

» path consists of line segments

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

v

use Dijkstra to find the shortest path

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

v

use Dijkstra to find the shortest path

but to find all viable line segments

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

» use Dijkstra to find the shortest path

but to find all viable line segments

» find convex hull of every point clouds

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

» use Dijkstra to find the shortest path

but to find all viable line segments
» find convex hull of every point clouds

> test every viable line segment on intersection of convex hull's
sides

Needle

» given point clouds find shortest path from s to t

v

point clouds constitute convex non-touching shapes

v

path consists of line segments

v

identify all viable line segments

» use Dijkstra to find the shortest path

but to find all viable line segments
» find convex hull of every point clouds

> test every viable line segment on intersection of convex hull's
sides

> ignore sides adjacent to the segment that is being tested

Needle

se

et

Needle

Needle

Needle

Needle

B'I?I‘I‘.ﬁl” t

Thank you for your attention!

