
CTU Open 2022
Presentation of solutions

November 5, 2022

Journals

Journals

I Rewrite as sequence of journal types (up or down).

I UUUUDDDDUUUDDDDUUUUDDDDUU

I In one operation:
I Reverse a substring
I Swap types of journals

I UUUUDDDDUUUDDDDUUUUDDDDUU

I UUU | UDDDDUUU | DDDDUUUUDDDDUU

I UUU | UUUDDDDU | DDDDUUUUDDDDUU

I UUU | DDDUUUUD | DDDDUUUUDDDDUU

I UUUDDDUUUUDDDDDUUUUDDDDUU

Journals

I Rewrite as sequence of journal types (up or down).

I UUUUDDDDUUUDDDDUUUUDDDDUU

I In one operation:
I Reverse a substring
I Swap types of journals

I UUUUDDDDUUUDDDDUUUUDDDDUU

I UUU | UDDDDUUU | DDDDUUUUDDDDUU

I UUU | UUUDDDDU | DDDDUUUUDDDDUU

I UUU | DDDUUUUD | DDDDUUUUDDDDUU

I UUUDDDUUUUDDDDDUUUUDDDDUU

Journals

I Rewrite as sequence of journal types (up or down).

I UUUUDDDDUUUDDDDUUUUDDDDUU

I In one operation:
I Reverse a substring
I Swap types of journals

I UUUUDDDDUUUDDDDUUUUDDDDUU

I UUU | UDDDDUUU | DDDDUUUUDDDDUU

I UUU | UUUDDDDU | DDDDUUUUDDDDUU

I UUU | DDDUUUUD | DDDDUUUUDDDDUU

I UUUDDDUUUUDDDDDUUUUDDDDUU

Journals

I Rewrite as sequence of journal types (up or down).

I UUUUDDDDUUUDDDDUUUUDDDDUU

I In one operation:
I Reverse a substring
I Swap types of journals

I UUUUDDDDUUUDDDDUUUUDDDDUU

I UUU | UDDDDUUU | DDDDUUUUDDDDUU

I UUU | UUUDDDDU | DDDDUUUUDDDDUU

I UUU | DDDUUUUD | DDDDUUUUDDDDUU

I UUUDDDUUUUDDDDDUUUUDDDDUU

Journals

I Rewrite as sequence of journal types (up or down).

I UUUUDDDDUUUDDDDUUUUDDDDUU

I In one operation:
I Reverse a substring
I Swap types of journals

I UUUUDDDDUUUDDDDUUUUDDDDUU

I UUU | UDDDDUUU | DDDDUUUUDDDDUU

I UUU | UUUDDDDU | DDDDUUUUDDDDUU

I UUU | DDDUUUUD | DDDDUUUUDDDDUU

I UUUDDDUUUUDDDDDUUUUDDDDUU

Journals

I Note the splits between blocks of same types. Need to remove
all of them.

I UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU

I Can not remove more than two splits
I Any split with its both elements outside the operation or inside

the operation remains a split

I We can remove the optimal number of splits with each
operation.

I Use the operation on the second block.
I If only two blocks remain, than it’s final move.
I Otherwise we remove two splits.

I Answer is half the number of splits rounded up.

Journals

I Note the splits between blocks of same types. Need to remove
all of them.

I UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU

I Can not remove more than two splits
I Any split with its both elements outside the operation or inside

the operation remains a split

I We can remove the optimal number of splits with each
operation.

I Use the operation on the second block.
I If only two blocks remain, than it’s final move.
I Otherwise we remove two splits.

I Answer is half the number of splits rounded up.

Journals

I Note the splits between blocks of same types. Need to remove
all of them.

I UUUU | DDDD | UUU | DDDD | UUUU | DDDD | UU

I Can not remove more than two splits
I Any split with its both elements outside the operation or inside

the operation remains a split

I We can remove the optimal number of splits with each
operation.

I Use the operation on the second block.
I If only two blocks remain, than it’s final move.
I Otherwise we remove two splits.

I Answer is half the number of splits rounded up.

Patio

Patio

I The pavement must use k2 tiles for some integer k ≥ 3.

I k2 ≤ n

I k ≤
√
n, thus need to try only

√
n different sizes.

I In total, only n ·
√
n candidates for the nice pavement.

I Solution in time O(n ·
√
n) will pass easily.

I Let r be the number of red tiles in the block, b be the number
of blue ones.

I The block is valid if r = (k − 2)2 and b = 4k − 4 (or with r
and b swapped).

I Try all values 3 ≤ k ≤
√
n and all starting positions.

I Quickly maintain the values of r and b.

Volcanoes

Volcanoes

I If there won’t be any any point with common x coordinate,
we would only sort the points and go from left to right.

I Observation: The only interesting points with similar x
coordinates are the lowest and highest.

I We can build DAG from each of the bottommost/topmost
node of each x coordinate to the bottommost/topmost node
of the following x coordinate.

I Use dynamic programming: O(N)

I Alternatively use Dijkstra: O(N log2(N))

Volcanoes

I If there won’t be any any point with common x coordinate,
we would only sort the points and go from left to right.

I Observation: The only interesting points with similar x
coordinates are the lowest and highest.

I We can build DAG from each of the bottommost/topmost
node of each x coordinate to the bottommost/topmost node
of the following x coordinate.

I Use dynamic programming: O(N)

I Alternatively use Dijkstra: O(N log2(N))

Volcanoes

I If there won’t be any any point with common x coordinate,
we would only sort the points and go from left to right.

I Observation: The only interesting points with similar x
coordinates are the lowest and highest.

I We can build DAG from each of the bottommost/topmost
node of each x coordinate to the bottommost/topmost node
of the following x coordinate.

I Use dynamic programming: O(N)

I Alternatively use Dijkstra: O(N log2(N))

Wagon

Wagon

I Naive solution:
I If you don’t have any item try to buy any of the items (and

carry it futher) or none.
I If you have an item try to either sell it or carry it futher.

I Complexity: O(MN)

I Optimization - use dynamic programming. If you remember
which item you bought the complexity would be O(MN2)

I This can be futher optimized if you jump through bought
items only if you build one.

I To do this you can build some kind of ”next” array.

I Complexity: O(MN + N log2(N))

Wagon

I Naive solution:
I If you don’t have any item try to buy any of the items (and

carry it futher) or none.
I If you have an item try to either sell it or carry it futher.

I Complexity: O(MN)

I Optimization - use dynamic programming. If you remember
which item you bought the complexity would be O(MN2)

I This can be futher optimized if you jump through bought
items only if you build one.

I To do this you can build some kind of ”next” array.

I Complexity: O(MN + N log2(N))

Wagon

I Naive solution:
I If you don’t have any item try to buy any of the items (and

carry it futher) or none.
I If you have an item try to either sell it or carry it futher.

I Complexity: O(MN)

I Optimization - use dynamic programming. If you remember
which item you bought the complexity would be O(MN2)

I This can be futher optimized if you jump through bought
items only if you build one.

I To do this you can build some kind of ”next” array.

I Complexity: O(MN + N log2(N))

Mower

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

I 2-player snake-like game

I decide whether the first player wins

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Mower

s

Solution:

ll W, H, X, Y; cin >> W >> H >> X >> Y;

cout << ((W%2==0)||(H%2==0)||((X+Y)%2!=0)?"Win":"Lose");

Earthquake

Earthquake

I Checking all numbers from the old list for each number from
the stained list is slow

I Instead, we build a reverse index

I For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

I Upon inspection of a stained number, just return the value in
its counter

Earthquake

I Checking all numbers from the old list for each number from
the stained list is slow

I Instead, we build a reverse index

I For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

I Upon inspection of a stained number, just return the value in
its counter

Earthquake

I Checking all numbers from the old list for each number from
the stained list is slow

I Instead, we build a reverse index

I For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

I Upon inspection of a stained number, just return the value in
its counter

Earthquake

I Checking all numbers from the old list for each number from
the stained list is slow

I Instead, we build a reverse index

I For each number from the old list, generate all possible
stained numbers that may correspond to it and increment the
counter of each by one

I Upon inspection of a stained number, just return the value in
its counter

Earthquake

I How many possible stained numbers for a particular number
from the old list are there?

I Not stained – 1 728147956

I Coffee stained

Once:
(9
1

)
= 9

?28147956
7?8147956
72?147956
. . .

Twice:
(9
2

)
= 36

??8147956
?2?147956
?28?47956
. . .

I Juice stained – number of continuous subsequences, that are
omitted: 9 + 8 + . . . + 1 = 45

7︸︷︷︸
*

28147956 72︸︷︷︸
*

8147956 728︸︷︷︸
*

147956 . . .

Earthquake

I How many possible stained numbers for a particular number
from the old list are there?

I Not stained – 1 728147956

I Coffee stained

Once:
(9
1

)
= 9

?28147956
7?8147956
72?147956
. . .

Twice:
(9
2

)
= 36

??8147956
?2?147956
?28?47956
. . .

I Juice stained – number of continuous subsequences, that are
omitted: 9 + 8 + . . . + 1 = 45

7︸︷︷︸
*

28147956 72︸︷︷︸
*

8147956 728︸︷︷︸
*

147956 . . .

Earthquake

I How many possible stained numbers for a particular number
from the old list are there?

I Not stained – 1 728147956

I Coffee stained

Once:
(9
1

)
= 9

?28147956
7?8147956
72?147956
. . .

Twice:
(9
2

)
= 36

??8147956
?2?147956
?28?47956
. . .

I Juice stained – number of continuous subsequences, that are
omitted: 9 + 8 + . . . + 1 = 45

7︸︷︷︸
*

28147956 72︸︷︷︸
*

8147956 728︸︷︷︸
*

147956 . . .

Earthquake

I How many possible stained numbers for a particular number
from the old list are there?

I Not stained – 1 728147956

I Coffee stained

Once:
(9
1

)
= 9

?28147956
7?8147956
72?147956
. . .

Twice:
(9
2

)
= 36

??8147956
?2?147956
?28?47956
. . .

I Juice stained – number of continuous subsequences, that are
omitted: 9 + 8 + . . . + 1 = 45

7︸︷︷︸
*

28147956 72︸︷︷︸
*

8147956 728︸︷︷︸
*

147956 . . .

Earthquake

I In total, this is at most 91 possible stained numbers per
a number in the old list = 91 · 104 ⇒ at most ∼ 106 possible
stained numbers to be preprocessed

Robots

Robots

I Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

I For every node we want to know the first time tiger can get
there in ”odd” time and in ”even” time.

I Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

I Try to get (by BFS) from start to end.
I If you step on node earlier then AtlasTiger - you can enter.
I If you step on node after the first odd occurence of tiger but

before first even occurence of tiger, you can enter if and only if
the time is even.

I If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

I If you step on node after first occurence of tiger in both, odd
and even times, you can’t step on the node.

I Complexity O(N)

Robots

I Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

I For every node we want to know the first time tiger can get
there in ”odd” time and in ”even” time.

I Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

I Try to get (by BFS) from start to end.
I If you step on node earlier then AtlasTiger - you can enter.
I If you step on node after the first odd occurence of tiger but

before first even occurence of tiger, you can enter if and only if
the time is even.

I If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

I If you step on node after first occurence of tiger in both, odd
and even times, you can’t step on the node.

I Complexity O(N)

Robots

I Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

I For every node we want to know the first time tiger can get
there in ”odd” time and in ”even” time.

I Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

I Try to get (by BFS) from start to end.
I If you step on node earlier then AtlasTiger - you can enter.
I If you step on node after the first odd occurence of tiger but

before first even occurence of tiger, you can enter if and only if
the time is even.

I If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

I If you step on node after first occurence of tiger in both, odd
and even times, you can’t step on the node.

I Complexity O(N)

Robots

I Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

I For every node we want to know the first time tiger can get
there in ”odd” time and in ”even” time.

I Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

I Try to get (by BFS) from start to end.
I If you step on node earlier then AtlasTiger - you can enter.
I If you step on node after the first odd occurence of tiger but

before first even occurence of tiger, you can enter if and only if
the time is even.

I If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

I If you step on node after first occurence of tiger in both, odd
and even times, you can’t step on the node.

I Complexity O(N)

Robots

I Observation - as soon as AtlasTiger is able to get to a field,
he can get there every second turn.

I For every node we want to know the first time tiger can get
there in ”odd” time and in ”even” time.

I Duplicate all nodes (odd/even) and process BFS from node of
AtlasTiger.

I Try to get (by BFS) from start to end.
I If you step on node earlier then AtlasTiger - you can enter.
I If you step on node after the first odd occurence of tiger but

before first even occurence of tiger, you can enter if and only if
the time is even.

I If you step on node after the first even occurence of tiger but
before first odd occurence of tiger, you can enter if and only if
the time is odd.

I If you step on node after first occurence of tiger in both, odd
and even times, you can’t step on the node.

I Complexity O(N)

Array

Array

I Pascal triangle, i-th entry on n-th row is
(n−1
i−1

)
.

row 1: 1

row 2: 1 1

row 3: 1 2 1

row 4: 1 3 3 1

· · · · · · · · · · · · · · · · · ·

row n: 1 n− 1 Θ(n2) · · · Θ(n2) n− 1 1

I Task: Find topmost occurrence of a number ≤ 109.
I Observation: There is relatively small number of small Pascal

numbers (with exception of the obvious ones - on borders).
I On row n ≥ 44723, only one new value not greater than 109:

n − 1.
I On row n ≥ 1820, only two: n − 1 and

(
n−1
2

)
.

I Generate all numbers, store them in map/dictionary and then
swiftly answer for each query. If number n is not in map, reply
row n + 1.

Array

I Pascal triangle, i-th entry on n-th row is
(n−1
i−1

)
.

row 1: 1

row 2: 1 1

row 3: 1 2 1

row 4: 1 3 3 1

· · · · · · · · · · · · · · · · · ·

row n: 1 n− 1 Θ(n2) · · · Θ(n2) n− 1 1

I Task: Find topmost occurrence of a number ≤ 109.
I Observation: There is relatively small number of small Pascal

numbers (with exception of the obvious ones - on borders).
I On row n ≥ 44723, only one new value not greater than 109:

n − 1.
I On row n ≥ 1820, only two: n − 1 and

(
n−1
2

)
.

I Generate all numbers, store them in map/dictionary and then
swiftly answer for each query. If number n is not in map, reply
row n + 1.

Canoes

Canoes

I First we make observations about glaringly impossible cases

I Intersections at the ends of docks are OK X

1

2

3

4

1 2 3

x

y

1

2

3

4

1 2 3

Canoes

I First we make observations about glaringly impossible cases

I Intersections at the ends of docks are OK X

1

2

3

4

1 2 3

x

y

1

2

3

4

1 2 3

Canoes

I Intersections of the middle of a dock with an end of a dock
are OK X

1

2

3

4

1 2 3

1

2

3

4

1 2 3

Canoes

I Intersections of the middle of a dock with the middle of a
dock are not OK X

1

2

3

4

1 2 3

1

2

3

4

1 2 3

Canoes

I Intersections of the middle of a dock with the middle of a
dock are not OK X

I Also not when two docks coincide

1

2

3

4

1 2 3

1

2

3

4

1 2 3

Canoes

I Intersections of the middle of a dock with the middle of a
dock are not OK X

I Also not when two docks coincide

I With the exception of square boats X

1

2

3

4

1 2 3

1

2

3

4

1 2 3

Canoes

I We model the configuration as implications with the use of
the following key: ↑ X , ↓ ¬X , ← X , → ¬X

1

2

3

4

1 2 3

A

¬B
1

2

3

4

1 2 3

¬A

B

I Yields (A⇒ ¬B)⇔ (B ⇒ ¬A)⇔ (¬A ∨ ¬B)

Canoes

1

2

3

4

1 2 3

A

¬B
1

2

3

4

1 2 3

¬A

¬B

I Yields (¬B)⇔ (¬B ∨ ¬B)⇔ (B ⇒ ¬B)

Canoes

I For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(A ∨ ¬B) ∧ (C ∨ C) ∧ (¬C ∨ ¬D) ∧ . . .

I We employ a SCC-based 2-SAT algorithm, which provides
solution in O(N + M) for N variables and M clauses

I Complexity: O(N)

Canoes

I For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(A ∨ ¬B) ∧ (C ∨ C) ∧ (¬C ∨ ¬D) ∧ . . .

I We employ a SCC-based 2-SAT algorithm, which provides
solution in O(N + M) for N variables and M clauses

I Complexity: O(N)

Canoes

I For N docks, we obtain 2-SAT with O(N) variables and O(N)
clauses

(A ∨ ¬B) ∧ (C ∨ C) ∧ (¬C ∨ ¬D) ∧ . . .

I We employ a SCC-based 2-SAT algorithm, which provides
solution in O(N + M) for N variables and M clauses

I Complexity: O(N)

Transmitters

Transmitters

I Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

I aaabc

I abbc

I aaabx

Transmitters

I Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

I aaabc

I abbc

I aaabx

Transmitters

I Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

I aaabc

I abbc

I aaabx

Transmitters

I Cost of the block of strings: the sum of lengths of longest
common prefixes for all pairs of strings.

I aaabc

I abbc

I aaabx

Transmitters

I For every i , find the minimum index j such that block [i , j]
has cost at least K .

I Use sliding window: Note that as i increases, j can not
decrease.

I Use trie to keep track of cost:
I Contains all the strings in block [i , j].
I Count how many times each prefix appears.
I Make sure to update count when adding/removing strings.

I Linear complexity.

Transmitters

I For every i , find the minimum index j such that block [i , j]
has cost at least K .

I Use sliding window: Note that as i increases, j can not
decrease.

I Use trie to keep track of cost:
I Contains all the strings in block [i , j].
I Count how many times each prefix appears.
I Make sure to update count when adding/removing strings.

I Linear complexity.

Transmitters

→ aaabc

abbc

aaabx

Cost: 0

1
a

Transmitters

→ aaabc

abbc

aaabx

Cost: 0

1
a

1
a

Transmitters

→ aaabc

abbc

aaabx

Cost: 0

1
a

1
a

1
a

Transmitters

→ aaabc

abbc

aaabx

Cost: 0

1
a

1
a

1
a

1
b

Transmitters

→ aaabc

abbc

aaabx

Cost: 0

1
a

1
a

1
a

1
b

1
c

Transmitters

→ aaabc

→ abbc

aaabx

Cost: 1

2
a

1
a

1
a

1
b

1
c

Transmitters

→ aaabc

→ abbc

aaabx

Cost: 1

2
a

1
a

1
a

1
b

1
c

1
b

Transmitters

→ aaabc

→ abbc

aaabx

Cost: 1

2
a

1
a

1
a

1
b

1
c

1
b

1
b

Transmitters

→ aaabc

→ abbc

aaabx

Cost: 1

2
a

1
a

1
a

1
b

1
c

1
b

1
b

1
c

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 3

3
a

1
a

1
a

1
b

1
c

1
b

1
b

1
c

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 4

3
a

2
a

1
a

1
b

1
c

1
b

1
b

1
c

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 5

3
a

2
a

2
a

1
b

1
c

1
b

1
b

1
c

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 6

3
a

2
a

2
a

2
b

1
c

1
b

1
b

1
c

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 6

3
a

2
a

2
a

2
b

1
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 4

2
a

2
a

2
a

2
b

1
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 3

2
a

1
a

2
a

2
b

1
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 2

2
a

1
a

1
a

2
b

1
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 1

2
a

1
a

1
a

1
b

1
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 1

2
a

1
a

1
a

1
b

0
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

1
a

1
a

1
a

1
b

0
c

1
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

1
a

1
a

1
a

1
b

0
c

0
b

1
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

1
a

1
a

1
a

1
b

0
c

0
b

0
b

1
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

1
a

1
a

1
a

1
b

0
c

0
b

0
b

0
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

0
a

1
a

1
a

1
b

0
c

0
b

0
b

0
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

0
a

0
a

1
a

1
b

0
c

0
b

0
b

0
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

0
a

0
a

0
a

1
b

0
c

0
b

0
b

0
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

0
a

0
a

0
a

0
b

0
c

0
b

0
b

0
c

1
x

Transmitters

→ aaabc

→ abbc

→ aaabx

Cost: 0

0
a

0
a

0
a

0
b

0
c

0
b

0
b

0
c

0
x

Transmitters

I Alternatively use hashing!

I For each prefix, keep track of how many times it is in the
sliding window.

I Use rolling hash to quickly compute the next hash.

I Linear solution.

I Watch out for collisions!

Shamans

Shamans

I Construct a graph: each tile is a vertex, connect by edges tiles
sharing an edge.

I We can cut two tiles if their edge is a bridge (its removal
makes the graph disconnected).

I We can identify bridges in O(n + m).

Shamans
I Try all possible sizes of the cut parchments.

I Must be a divisor of n, thus only at most 2 ·
√
n possibilities.

I First pick the size of the cut parchments. Then check if it’s
valid.

1

1

1

6

6

6

I 21 blocks in total. Try sizes 1, 3, 7, 21.

I Go bottom up: merge biconnected components until they
reach the correct size.

I Then check its shape and remove the component.

I O(n) for one size of the cut parchments, total running time
O(n
√
n).

Shamans
I Try all possible sizes of the cut parchments.

I Must be a divisor of n, thus only at most 2 ·
√
n possibilities.

I First pick the size of the cut parchments. Then check if it’s
valid.

1

1

1

6

6

6

I 21 blocks in total. Try sizes 1, 3, 7, 21.

I Go bottom up: merge biconnected components until they
reach the correct size.

I Then check its shape and remove the component.

I O(n) for one size of the cut parchments, total running time
O(n
√
n).

Needle

Needle

s t

0

1

2

0

Needle

s t

0

1

2

0

Needle

s t

0

1

2

0

Needle

s t

0

1

2

0

Needle

s

t

0

1

20

01

2

1
0

1 2

2

0 1

23

Needle

s

t

0

1

20

01

2

1
0

1 2

2

0 1

23

Needle

s

t

0

1

20

01

2

1
0

1 2

2

0 1

23

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

I given point clouds find shortest path from s to t

I point clouds constitute convex non-touching shapes

I path consists of line segments

I identify all viable line segments

I use Dijkstra to find the shortest path

but to find all viable line segments

I find convex hull of every point clouds

I test every viable line segment on intersection of convex hull’s
sides

I ignore sides adjacent to the segment that is being tested

Needle

s t
0

1

2

3

Needle

s t
0

1

2

3

Needle

s t

Needle

s t

Needle

s

t

Needle

s

t

Needle

s

t

Needle

s

t

Needle

Needle

Thank you for your attention!

